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ABSTRACT

In this paper, we describe the BBN Byblos system used for
the 1997 DARPA Hub-4 Broadcast News evaluation and dis-
cuss numerous improvements made to the system in 1997. We
focused our e�ort entirely upon the two conditions containing
studio-quality uncorrupted speech from native speakers, the
so-called F0 (prepared speech) and F1 (spontaneous speech)
conditions. In particular, we did not bother to create a sep-
arate acoustic model for narrow-band telephone speech. Our
overall 1997 Hub-4 evaluation result was 20.4% WER, but
our error rate on the F0/F1 conditions was only 14%. We
ran regression tests on development test data that show we
reduced word error rate by 22-30% on the F0/F1 conditions
compared to our 1996 system. Sizable gains were achieved on
all the other conditions as well, even though no extra e�ort
was spent toward improving them. Brief summaries of three
related e�orts are also given covering the use of Byblos for
Spanish news transcription, near real-time transcription, and
automatic extraction of named entities from broadcast news.

1. INTRODUCTION

Broadcast news data is characterized by a bewildering variety
of acoustic conditions since the speaker, speaking style, chan-
nel and environment change frequently. In 1997, we focused
our attention entirely upon those portions of the news broad-
casts containing studio-quality, uncorrupted speech from na-
tive speakers of American English. In the Hub-4 test context,
data of this type is captured in two conditions labeled, F0
for prepared speech, and F1 for spontaneous speech. These
conditions are typical of mainline news reportage over high-
quality studio channels.

The motivation for this decision to concentrate our e�orts is
based in the observation that baseline speech recognition per-
formance on clean wideband data is still unacceptably poor
(approximately 25% WER in 1996) for most applications.
Moreover, this kind of speech constitutes the majority of the
content-rich portion of the news that would be most useful
for information retrieval or extraction applications. We be-
lieve that fundamental improvements in recognition accuracy
will be most easily achieved on uncorrupted data �rst, and
that some fraction of any such fundamental improvements
will translate to the corrupted conditions. Comparative tests
described here seem to support this belief.

In the next section, we give an overview of the Byblos tran-
scription system used for the 1997 Hub-4 evaluation. In sec-
tion 2, we list the numerous improvements made to the sys-
tem since the 1996 test. Results are discussed in section 3.

In section 4, we briey introduce three additional research
e�orts conducted with the 1997 Byblos transcription system.
These include formal tests on Spanish broadcast news tran-
scription, near real-time recognition of broadcast news, and
an informal examination of named-entity extraction from au-
tomatic transcriptions of broadcast news.

2. SYSTEM DESCRIPTION

The system we used in the 1997 Hub-4 test di�ers only in the
details from the 1996 system, which is described in [6]. Many
details were changed, however, and these are discussed in the
next section which describes the improvements we made in
the past year. Below, we briey review the salient general
features of the Byblos transcription system that are common
to our systems of the last 2 years.

The overall system organization for this year is identical to
the 1996 Byblos transcription system:

1. Segment and classify gender

2. Cluster the segments

3. Decode with Speaker-Independent (SI) models, to get
transcriptions for adaptation

4. Adapt models to each cluster

5. Decode with Speaker-Adaptively Trained (SAT) models,
to produce the �nal answer

We use an e�cient 2-pass decoder [11] to produce a set of
N-best hypotheses from which we select the optimal answer
by rescoring the N-best list with a more detailed model. The
2-pass decoder is run twice on the input data as noted above
in steps (3) and (5). The �rst run produces the best SI hy-
pothesis which is used as the supervisory transcription for
unsupervised adaptation to the clustered test data. The sec-
ond decode uses the adapted acoustic models to produce the
�nal answers.

The monolithic broadcast news input is segmented and
gender-classi�ed in one step with a context-independent 2-
gender phoneme decoder as described in [6]. The chopped
segments are clustered automatically in an attempt to pool
the data from each speaker for the bene�t of unsupervised
adaptation as described in [4]. The spectrum mean and
variance is normalized over each segment, with speech and
non-speech frames normalized separately. Gender-dependent
acoustic models are estimated from the training data with-
out regard to the speech environment or signal bandwidth



[12]. The gender-dependent SI models are re�ned by Speaker-
Adapted Training (SAT) [1], [10], which attempts to model
speaker di�erences jointly with the estimation of the speaker-
independent phonetic model parameters.

For each gender, we create three models. The Phoneme-
Tied Mixture (PTM) model has 45 phonetic codebooks with
256 Gaussians per phone and approximately 25K mixture
weight vectors associated with the codebooks. The PTM
model is used for the fast-match initial pass of the decoder
and contains only within-word triphones.

The second pass of the Byblos decoder uses within-word State
Clustered Tied Mixtures (SCTM) to generate a N-best list of
the top scoring hypotheses. Each within-word SCTM code-
book contains 64 Gaussians. There were 2K codebooks and
24K weight vectors created for the female model. The male
model, which was estimated from twice as much data as the
female model, had 4K codebooks and 38K weights vectors.

The top 300 best hypotheses from the second pass of the de-
coder are then rescored with a between-word SCTM model to
select the top choice. Each between-word SCTM codebook
has 64 Gaussians. The number of codebooks are approxi-
mately the same as for the within-word SCTM model, while
the mixture weights increased in number by about 10%.

The language model was unchanged from 1996. We used
about 450 million words of text from LDC corpora to esti-
mate the trigram language model. Approximately one third
of this data originated from broadcast news sources with the
rest coming from newspaper sources. The acoustic training
transcriptions were included 10 times in the LM training.
The �nal LM had approximately 12M bigrams and 24M tri-
grams. Our recognition lexicon consisted of 45K words. Cov-
erage of this lexicon on the 1996 Hub-4 test was 99.1%.

3. RECENT IMPROVEMENTS

Although the overall system didn't change much in the pre-
vious year, many small additive improvements were made to
many parts of the system. The most important of these are
described below.

3.1. Training Data

A new release of acoustic training data was published by LDC
in 1997. This doubled the available training data compared
to the 1996 release. The measured amount of usable speech
in the complete 1997 training corpus is 80 hours. We observe
an overall reduction in WER of 10% relative for this doubling
of the training data. This translated to an absolute gain of
about 3%. On closer examination, we see that most of the
gain is due to the female speakers which constitute about one
third of broadcast news data. We conclude that doubling the
female training data from 13 to 26 hours has a signi�cant
e�ect, whereas increasing the male data from 26 to 52 hours is
unimportant. We can conclude that 25 hours of training data
from a given gender is an adequately sized training corpus.

We made an e�ort to segment the training data with greater
care by cutting �rst at the longest pauses and the recur-
sively cutting at the next longest while trying to minimize

the variance in duration of the resulting segments. We also
paid attention to the segment end conditions, ensuring that
at least 10 frames of silence (background) were present. Al-
though summary statistics for these e�ects greatly improved
with this treatment of the training data, it had no e�ect on
recognition performance.

3.2. Analysis

We improved our SNR-dependent cepstral normalization pro-
cedure by making better estimates of speech and noise frames
and by including variance normalization as well. This ac-
counted for an absolute gain of 0.7% in development tests.

We began using LPC smoothing of the Mel-warped spectrum
this year and we observed that varying the numbers of LPC
poles in the analysis had an inordinately large e�ect on WER
{ nearly 20% relative going from 14 poles to 28. Investigat-
ing further, we discovered that the 14 pole condition was
degenerate and that an optimum LPC order occurred at 36
poles. We also discovered that LPC smoothing is sensitive to
the spectrum oor which we usually pad to avoid very large
negative excursions in the log-spectral domain. The gain for
LPC smoothing was realized only after we reduced the spec-
tum oor padding to 10�6. On the male test speakers, the
gain in WER was small but consistent { 0.7% absolute on
the F0/F1 conditions, and about the same gain over all con-
ditions. We ran out of time to test LPC smoothing on the
female speakers and therefore use it only on the males in the
1997 Hub-4 evaluation.

3.3. Segmentation

Since the 1997 evaluation test came in the form of a single
3-hour waveform, we improvised a preliminary treatment to
reduce the input into manageable chunk sizes. We chopped
it arbitrarily into 8 arbitrary 23-minute pseudo episodes. As
before, we segmented and gender-classi�ed the input in one
step with a context-independent 2-gender phoneme decoder
as described in [6] But this year, we chopped more aggres-
sively, creating segments that were only 4 seconds long on
average. The shorter segments produced a better set of N-
best hypotheses by reducing the number of permutations of
the word errors, thereby extending the range between the
best and worst N-best choices within the �xed length list.
This alone gave us an absolute 0.5% gain.

We wanted to have some measure of segmentation quality
independent of recognition results so we subjectively de-
termined likely linguistic boundaries (sentence ends) and
marked them in the transcription. We could then measure
how often our automatic segmentation algorithms located
boundaries at linguistically reasonable points. We found that
our baseline segmentation performance, on average 8 second
segments, was surprisingly good { 56% of the segment begin-
nings and 62% of their ends occurred at sentence boundaries.
This segmentation accuracy was reduced somewhat for the
shorter segments, but they improved performance nonethe-
less.

We found that there were many more �lled pauses (err, ah,
um, etc.) located at the beginning of segments and most
of these were involved in errors. We modi�ed the language



model to relax the assumption that the segment begins at a
linguistic sentence boundary, but we observed no additional
gain in recognition performance.

3.4. Phone Model Estimation

Quinphone modeling has been shown to give small but con-
sistent gains in large vocabulary speech recognition. Quin-
phone models are extended 2 contexts both to the left and the
right of the phone to capture the coarticulation e�ect in more
detail than the triphone. Since this extension increases the
number of models signi�cantly, a binary decision tree cluster-
ing is typically used to group similar model-states together
to insure that there are su�cient data to train them.

For simplicity, we chose to capture only the boundary phone
of the neighboring word in quinphone models that span word
boundaries. We assign this boundary phone as the +2 or -2
context in the quinphone. A special word-boundary symbol
plays the role of the +1 or -1 context. This simpli�es the
necessary change in the decoding modules of the quinphone
system (i.e. there's not much di�erence compared to a tri-
phone system). This simple implementation of the quinphone
models gave us a solid 1 point gain in absolute WER reduc-
tion over the triphone system on the clean wideband speech
conditions (F0 and F1 data) in the 1996 Hub-4 development
test set.

We also changed our state clustering procedure to bootstrap
from single Gaussians. This gave us another 0.7% absolute
gain.

3.5. Pronunciation Modeling

We looked in depth at the behavior of our recognizer on spon-
taneous speech and found several e�ective ways to dramati-
cally improve performance. Explicit modeling of �lled pauses
and laughter and extremely coarticulated phrases yielded a
large gain of nearly 3% points. Details of this work are given
in a companion paper in this volume, [8].

3.6. Adaptation

We improved our speaker adaptation procedures in several
ways this past year. We changed our approach to Speaker
Adapted Training (SAT) to a more computationally e�cient
Inverse Transform SAT that was introduced in [10]. We have
also begun to use many diagonal transformations instead of
a few full matrix transformations in SAT training. In the
unsupervised adaptation stage, we are now using an iterative
approach that starts with a constrained transformation which
is relaxed on subsequent iterations. This work is described
in detail in another paper in this volume, [5].

We also evaluated our speaker clustering algorithm and have
improved it by introducing an additional penalty for clus-
ters that contain only one short segment. Adapting to such
clusters is unwise due to data sparsity. The new algorithm
produces fewer singleton clusters and helps improve the qual-
ity of adaptation by a small margin.

3.7. Deleted Phone Modeling

During constrained decoding to create training labels, we of-
ten observed sequences of phones at the minimum duration of
our HMM. We hypothesized that these could be signs of heav-
ily coarticulated phonemes or completely deleted phones. We
made several attempts to model phoneme deletions explicitly
in the model but none of these yielded any gain. The one ap-
proach that had an e�ect was also the simplest; we added a
skip transition from the �rst state to the last in our 5-state
HMM. This reduced the minimum duration of the model to
2 frames, which apparently was enough to alleviate the prob-
lem. The number of phones at the minimum duration was
reduced from about 12% to less than 3% for spontaneous
speech and an absolute gain of 0.7% resulted. On further
examination, we found that our PTM model produces many
more phones at the minimum duration but the SCTM model
does not have this problem. We veri�ed that the fast-match
pass using the PTM model does not produce search errors
despite this suspicious behavior.

3.8. Vocal Tract Length Normalization

Vocal Tract Length Normalization (VTLN) has been repeat-
edly shown to be e�ective in reducing WER of the Switch-
board/Callhome corpus, generally by more than 10% relative.
Paradoxically, we were not able to reproduce this robust ef-
fect on the broadcast news corpus. We studied the problem
extensively, but were not able to �nd an explanation for this
di�erence in performance on the two domains.

In every detailed step of the procedure, VTLN applied to
Broadcast News data appears to be functioning reasonably.
The Gaussian Mixture Model (GMM) used to select the best
stretch appears to work reasonably well for a wide range of
data from a speaker (several minutes to as little as a few sec-
onds). The distribution of stretches for the training speakers
is approximately Gaussian, with a mean nearly centered at
unity (no stretch). It also seems to work as well for clean
data as for data corrupted with noise or music. The likeli-
hoods produced by the GMM are correlated with the scores
produced by the HMM during decoding. Nonetheless, the
GMM is not selecting stretches that are correlated with word
error rate.

We produced an oracle result by decoding each speaker at
each quantized stretch and then determined the stretch re-
quired to achieve the lowest error rate by examination of
the results. On Switchboard, the oracle result was relatively
about 15% better than the no-VTLN result. For Broadcast
News, the maximum gain available was only about 8% rel-
ative. More perplexing, however, was that all the potential
oracle gain was lost in the fair test.

In the end, we were left with many conicting results. We
were not able to demonstrate any gain from VTLN on broad-
cast news data and did not use it in the 1997 evaluation.

3.9. Bigram on Mixture Weights

The usual Gaussian mixture model HMM allows a choice
among the mixture components in a state for each frame.
However, assuming that a particular token of a phoneme was



all produced under some particular set of conditions (speaker,
channel, environment, style), successive frames are highly
correlated. Within our current HMM framework, the speech
trajectory is captured by using derivatives of the input cep-
stra and the transition probability across states of the HMMs.
In addition to these, we tried a novel approach to model the
speech trajectory in the model space itself. We estimated the
mixture weight probabilities conditioned on the mixture com-
ponents from the previous frames. One can make an analogy
to language modeling. The normal mixture weights represent
a unigram model on the mixture sequence. We proposed to
use a bigram model of the mixture sequence. This would di-
rectly model the dependence of each frame on the previous
frame.

Using the bigram mixture model, we observed signi�cant per-
plexity reductions for the bigrams versus the unigrams. For
example, for a 32-compenent mixture density for the male
gender, the perplexity is reduced almost 1/3 on the training
data and 1/2 on the testing reference data. Moreover, the
bigram perplexity increase for test over training is not very
large | less than a factor of two. Despite this promising be-
ginning, we were not able to achieve a gain of any signi�cance
on development tests.

3.10. Topic-Cache Language Model

We have developed a HMM topic indexer that is quite good
at predicting reasonable topics for transcripts of general news
stories. This is a domain in which the number of topics is
very large (5000 or more) and very detailed. We attempted
to use this capability to improve recognition results.

The general approach is to construct a cache of N-grams that
have relevance to the story under hypothesis and raise their
likelihoods in the general background language model. Last
year we populated the cache with all words contained in the
training stories labeled with the same topic(s). This was not
successful, i.e. it failed to reduce word error rate, because it
increased the likelihood of too many words, including many
that were not relevant to the topic. We decided this year to
try a more focused approach, increasing the weights only for
those words whose probability is high given the topic. On
average, this only a�ects a few hundred words per story.

But once again, were not able to achieve any signi�cant gains
for the adaptive LM cache model. The approach was limited
by the relatively few potential corrections that could be made
given the small number of topic keywords that were primed
in the cache. Furthermore, most of these keywords needed to
be correct for the topic to be triggered in the �rst place. In
conclusion, we do not see a way to use topic information to
increase recognition performance signi�cantly.

4. DISCUSSION OF RESULTS

The Byblos system achieved a word error rate (WER) of
20.4% on the 1997 Hub-4 evaluation. In table 1, we display
the WER for each condition on the output of the two de-
coding stages in our system. The �rst column contains the
unadapted speaker-independent �rst-pass output. The over-
all SI performance of 22.6% is much better than we achieved
on the 1996 development test set with any system, indicating

that the 1997 evaluation test is substantially easier than the
development test set or the 1996 evaluation set.

Decoder Stage relative
Condition SI WER SAT WER gain

F0. prepared 13.2 12.3 7
F1. spontaneous 20.2 17.8 12
F2. low �delity 38.5 32.6 15
F3. music 29.0 27.9 4
F4. noise 26.4 24.7 6
F5. non-native 28.9 28.2 2
FX. mixed 46.3 42.8 8

F0/F1 15.4 14.0 9
OVERALL 22.6 20.4 10

Table 1: 1997 Hub-4 core test results, showing relative gain
between the SI and SAT-adapted recognition stages of the
BYBLOS system.

The second column shows the �nal output of Byblos after un-
supervised adaptation to the test data. Although every con-
dition improves, the relative overall gain is the smallest we've
observed since we began using unsupervised MLLR adapta-
tion [9]. Moreover, the gains for adaptation are smaller on
this test than we observed on either of the 1996 test sets.
At this point, we have no satisfactory explanation for this
observation.

Byblos System relative
Condition 1996 WER 1997 WER gain

F0. prepared 22.8 18.9 17
F1. spontaneous 31.6 23.7 25
F2. low �delity 34.3 30.7 11
F3. music 27.1 25.1 7
F4. noise 38.8 36.6 6
F5. non-native 38.1 35.8 6
FX. mixed 50.8 48.2 5

F0/F1 27.4 21.4 22
OVERALL 31.8 27.1 15

Table 2: Regression test on the 1996 Hub-4 UE data, show-
ing relative gains achieved by the 1997 Byblos transcription
system.

Table 2 shows results from a regression test performed on the
1996 Hub-4 evaluation data set. The results from the 1996
system shown are the o�cial evaluation results published by
NIST in 1996. The 1997 system results were generated on
the same test set using the identical system and system pa-
rameters that were used in the 1997 Hub-4 evaluation. The
relative gains achieved by the 1997 system shown in the last
column clearly show the impact of our decision to concentrate
all of our e�ort on improving core speech recognition repre-
sented by the clean wideband F0/F1 speech conditions. The
largest gain by far was achieved for the spontaneous speech



condition, which is very satisfying. For both the F0 and F1
conditions combined, our improvement for the year was 22%.
On development test data, the F0/F1 improvement was 30%
relative, from 27%WER down to 18%. Since these two condi-
tions account for 70% of the data and since this portion of the
data contains the most information-rich speech in broadcast
news, this is a signi�cant and useful achievement. Further-
more, since the gains for adaptation were greatly reduced on
this test set, we consider the gains demonstrated here to be
fundamental. That is, the basic model has been made more
accurate and more robust at the same time.

After F0 and F1, the next largest gain was achieved for the
low �delity condition, F2, which includes narrow band tele-
phone data. F2 data accounts for 16% of the 1997 test set. It
is noteworthy that we achieved this gain entirely from gen-
eral improvements in recognition developed on clean wide-
band data. As noted earlier, we declined to make a separate
narrowband acoustic model or to study the F2 data explic-
itly in any way, so that we could channel our e�ort toward
fundamental improvements. This result seems to a�rm the
e�cacy of that approach. It's important to acknowledge that
sizable additional gains can be made by explicitly modeling
narrowband data as was done by most participants in the
1997 Hub-4 evaluation. We simply felt that the additional
system complexity and research e�ort was not worth the ex-
pected return.

The relative gains were considerably smaller for conditions
F3-FX. These 4 conditions account for only 19% of the test
data. Still, these gains came for free and, excepting for the
catch-all FX condition, performance loss for the degraded
conditions is already less than 2 times the WER of clean pre-
pared speech (F0). Concentrated research work on the de-
graded conditions seems counter-productive to us since our
objective is to maximize the overall utility of automatic tran-
scription of broadcast news for other applications.

4.1. Computational Resources

The computation for this evaluation was done on Intel-based
PCs with 200MHz Pentium-Pro CPUs, 256MB of RAM, and
1.2GB of swap space. The operating system was Linux 2.0.3x
and the compiler was GNU gcc 2.7.2 from the Free Software
Foundation. Both of these are available as shareware at no
cost. These machines have a 1995 SPEC base rating of 8.1 for
the integer test, and 6.7 on the oating point test. The SPEC
base tests restrict the allowable compiler optimizations to a
standard set. For comparison, a Sun Sparc10 has SPEC95
base ratings of 1.0 for both the integer and oating point
tests. This is the �rst year that we have attempted to run an
evaluation on commodity PC hardware. In previous years,
we were restricted to RISC architecture workstations running
proprietary operating systems because the common PC was
not up to the task of large vocabulary speech recognition.
That era is now gone forever.

5. RELATED WORK

In addition to the Hub-4 Broadcast News evaluation in En-
glish, we have conducted additional work in three related
areas involving broadcast news speech data.

5.1. Transcription of Spanish News

The Byblos recognition system used in the Hub-4NE Spanish
evaluation is a simpli�ed version of the one used in the Hub-4
English test. The Spanish system di�ered from the English
system in the following ways:

� 2-level cepstal mean and variance normalization was not
used

� quinphones were not used

� SAT models were not used

� fewer acoustic model parameters were used

� gender independent models were used

The dimensions of the reduced acoustic model are as fol-
lows. For the PTM model, we used 35 codebooks with 256
Gaussians each. For the SCTM model, we created only 1600
codebooks with 32 Gaussians each.

We used 27.5 hours of acoustic training data for the Spanish
evaluation which came from the 81 episodes of development
data provided by LDC. We held out the 3 episodes desig-
nated by NIST as the development test set. The data was
processed in a manner similar to that used in the English
system. The language modeling data (157 million words to-
tal) includes all of the LM data provided by LDC and also
includes the transcriptions of the acoustic training data. The
LM data were from newspaper sources and therefore required
processing to transform numbers into words and to regular-
ize acronyms, initials, and other orthographic forms typical
of written language. We used a phonetic lexicon of Spanish
from LDC and extended it via automatic transduction from
letters to phonemes.

The results of the BBN Hub-4NE Spanish system in this
year's evaluation indicate that an HMM system such as By-
blos ports easily and e�ectively to other languages. Other
than the work required to construct the phonetic dictionary,
no language-speci�c knowledge, processing, or modeling were
required to con�gure Byblos to handle Spanish input.

relative
Test Vocab Adapt WER gain

30K no 28.1
Development 40K no 26.6 5%

40K yes 22.5 15%

Evaluation 40K yes 19.9

Table 3: Development and evaluation results for Byblos on
the Hub-4 Spanish task.

In table 3, we show the e�ect of increased vocabulary and
MLLR adaptation on WER for the development test set. The
enlarged lexicon improved coverage on the held-out develop-
ment test data. The 15% relative improvement for unsuper-
vised adaptation to the test data is signi�cantly larger that
we ever observe on English. Part of the explanation for this
e�ect may be due to the gender-independent acoustic model
used here.



Remarkably, the absolute performance on Spanish is better
than we achieved on the Hub-4 English test. Although we
can't calibrate the di�culty of the di�erent Hub-4 tests, it's
clear that the Spanish result is a very good initial benchmark.
There are several major limitations to the Spanish system,
each of which should render it less accurate than the English
system. The Spanish system had one third the training data
for both the acoustic and language model compared to the
English system. Moreover, the Spanish LM data came from
newspapers rather than from news broadcasts. The Span-
ish acoustic model used far fewer parameters and the SAT
paradigm was not used. The acoustic model was gender-
independent. Furthermore, none of the recent improvements
incorporated into the English system were used here and vir-
tually no system development was done with the Spanish
data other than verifying that the output appeared reason-
able. All in all, this demonstrates that porting to languages
other than English is straightforward and it does not require
a language-speci�c research e�ort in order to succeed.

5.2. Toward Real-Time Transcription

We also submitted a formal contrast evaluation result to
NIST for a system con�gured to run in six times the real-
time duration of the speech being decoded. The resulting
WER degraded only by 25% relative compared to the core
evaluation system result which ran at an average rate of two
hundred times real-time. These results are discussed in detail
in [3], elsewhere in this volume.

5.3. Name Extraction from Speech

We have recently conducted a study of the e�ect of speech
recognition errors and automatic transcription orthography
(SNOR format) on the performance of our learned named-
entity extraction engine, Nymble. Comparing to a baseline
name extraction F-measure of 86.8 at 0% WER (ideal speech
recognition), we observe 15% degradation in F-measure (to
73.4) when 20%WER transcriptions are used. We have found
that name extraction performance is quite sensitive to WER
and as such, this application is well suited for evaluating auto-
matic transcription utility within an application framework.
Details of this study are given in a companion paper, [7], else-
where in this volume. A description of the Nymble system is
described in [2].
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